Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
1.
Rev. argent. microbiol ; 55(4): 4-4, Dec. 2023.
Article in English | LILACS-Express | LILACS | ID: biblio-1550711

ABSTRACT

Abstract Chromatin remodeling enzymes are important "writers'', "readers'' and "erasers'' of the epigenetic code. These proteins are responsible for the placement, recognition, and removal of molecular marks in histone tails that trigger structural and functional changes in chromatin. This is also the case for histone deacetylases (HDACs), i.e., enzymes that remove acetyl groups from histone tails, signaling heterochromatin formation. Chromatin remodeling is necessary for cell differentiation processes in eukaryotes, and fungal pathogenesis in plants includes many adaptations to cause disease. Macrophomina phaseolina (Tassi) Goid. is a nonspe-cific, necrotrophic ascomycete phytopathogen that causes charcoal root disease. M. phaseolina is a frequent and highly destructive pathogen in crops such as common beans (Phaseolus vulgaris L.), particularly under both water and high temperature stresses. Here, we evaluated the effects of the classical HDAC inhibitor trichostatin A (TSA) on M. phaseolina in vitro growth and virulence. During inhibition assays, the growth of M. phaseolina in solid media, as well as the size of the microsclerotia, were reduced (p <0.05), and the colony morphology was remark-ably affected. Under greenhouse experiments, treatment with TSA reduced (p <0.05) fungal virulence in common bean cv. BAT 477. Tests of LIPK, MAC1 and PMK1 gene expression during the interaction of fungi with BAT 477 revealed noticeable deregulation. Our results provide additional evidence about the role of HATs and HDACs in important biological processes of M. phaseolina.


Resumen Las enzimas remodeladoras de la cromatina son «escritores¼, «lectores¼ y «borradores¼ importantes del código epigenético. Estas proteínas son responsables de la localización, el reconocimiento y la remoción de las marcas moleculares sobre las terminaciones de las histonas que desencadenan cambios funcionales y estructurales en la cromatina. Es el caso de las desacetilasas de histonas (HDAC), enzimas que remueven grupos acetilo de las «colas¼ de las histonas, señalizando la formación de heterocromatina. La anterior es una actividad necesaria en los procesos de diferenciación celular de los eucariotas, y se conoce que la patogénesis fúngica en las plantas requiere de adaptaciones diversas para ocasionar enfermedad. Macrophomina phaseolina (Tassi) Goid. es un ascomiceto fitopatógeno, necrótrofo e inespecífico, causante de la pudrición carbonosa. Este es un hongo frecuente y altamente destructivo en cultivos como fríjol común (Phaseolus vulgaris L.), particularmente bajo estrés hídrico y térmico. En este trabajo evaluamos los efectos del inhibidor de HDAC clásicas tricostatina A (TSA) sobre el crecimiento in vitro y la virulencia de M. phaseolina. El TSA redujo el crecimiento de M. phaseolina en medio sólido y el tamano de los microesclerocios (p < 0,05), lo que afectó la morfología colonial. En invernadero, el tratamiento con TSA disminuyó (p<0,05) la gravedad de la infección en la variedad de frijol BAT 477. La expresión de los genes de patogenicidad LIPK, MAC1 y PMK1 durante la interacción del hongo con la planta reveló una desregulación importante. Estos resultados proporcionan evidencia adicional del papel que cumplen las HDAC en la regulación de procesos biológicos fundamentales de M. phaseolina. © 2023 Asociación Argentina de Microbiología. Publicado por Elsevier Espana, S.L.U.

2.
Neuroscience Bulletin ; (6): 1087-1104, 2023.
Article in English | WPRIM | ID: wpr-982458

ABSTRACT

Gene transcription and new protein synthesis regulated by epigenetics play integral roles in the formation of new memories. However, as an important part of epigenetics, the function of chromatin remodeling in learning and memory has been less studied. Here, we showed that SMARCA5 (SWI/SNF related, matrix-associated, actin-dependent regulator of chromatin, subfamily A, member 5), a critical chromatin remodeler, was responsible for hippocampus-dependent memory maintenance and neurogenesis. Using proteomics analysis, we found protein expression changes in the hippocampal dentate gyrus (DG) after the knockdown of SMARCA5 during contextual fear conditioning (CFC) memory maintenance in mice. Moreover, SMARCA5 was revealed to participate in CFC memory maintenance via modulating the proteins of metabolic pathways such as nucleoside diphosphate kinase-3 (NME3) and aminoacylase 1 (ACY1). This work is the first to describe the role of SMARCA5 in memory maintenance and to demonstrate the involvement of metabolic pathways regulated by SMARCA5 in learning and memory.


Subject(s)
Mice , Animals , Memory , Chromatin Assembly and Disassembly , Hippocampus/metabolism , Transcription Factors/metabolism , Chromatin/metabolism , Metabolic Networks and Pathways
3.
Asian Journal of Andrology ; (6): 158-165, 2023.
Article in English | WPRIM | ID: wpr-971028

ABSTRACT

Prostate cancer is one of the most common diseases in men worldwide. Surgery, radiation therapy, and hormonal therapy are effective treatments for early-stage prostate cancer. However, the development of castration-resistant prostate cancer has increased the mortality rate of prostate cancer. To develop novel drugs for castration-resistant prostate cancer, the molecular mechanisms of prostate cancer progression must be elucidated. Among the signaling pathways regulating prostate cancer development, recent studies have revealed the importance of noncanonical wingless-type MMTV integration site family (WNT) signaling pathways, mainly that involving WNT5A, in prostate cancer progression and metastasis; however, its role remains controversial. Moreover, chromatin remodelers such as the switch/sucrose nonfermentable (SWI/SNF) complex and chromodomain helicase DNA-binding proteins 1 also play important roles in prostate cancer progression through genome-wide gene expression changes. Here, we review the roles of noncanonical WNT signaling pathways, chromatin remodelers, and epigenetic enzymes in the development and progression of prostate cancer.


Subject(s)
Male , Humans , Wnt Signaling Pathway , Chromatin , Prostatic Neoplasms, Castration-Resistant , Chromatin Assembly and Disassembly
4.
Braz. j. med. biol. res ; 56: e12854, 2023. tab, graf
Article in English | LILACS-Express | LILACS | ID: biblio-1520474

ABSTRACT

During the tumorigenic process, cancer cells may become overly dependent on the activity of backup cellular pathways for their survival, representing vulnerabilities that could be exploited as therapeutic targets. Certain molecular vulnerabilities manifest as a synthetic lethality relationship, and the identification and characterization of new synthetic lethal interactions may pave the way for the development of new therapeutic approaches for human cancer. Our goal was to investigate a possible synthetic lethal interaction between a member of the Chromodomain Helicase DNA binding proteins family (CHD4) and a member of the histone methyltransferases family (SETDB1) in the molecular context of a cell line (Hs578T) representing the triple negative breast cancer (TNBC), a subtype of breast cancer lacking validated molecular targets for treatment. Therefore, we employed the CRISPR-Cas9 gene editing tool to individually or simultaneously introduce indels in the genomic loci corresponding to the catalytic domains of SETDB1 and CHD4 in the Hs578T cell line. Our main findings included: a) introduction of indels in exon 22 of SETDB1 sensitized Hs578T to the action of the genotoxic chemotherapy doxorubicin; b) by sequentially introducing indels in exon 22 of SETDB1 and exon 23 of CHD4 and tracking the percentage of the remaining wild-type sequences in the mixed cell populations generated, we obtained evidence of the existence of a synthetic lethality interaction between these genes. Considering the lack of molecular targets in TNBC, our findings provided valuable insights for development of new therapeutic approaches not only for TNBC but also for other cancer types.

5.
Braz. j. biol ; 82: e253898, 2022. ilus
Article in English | LILACS, VETINDEX | ID: biblio-1360194

ABSTRACT

High temperature stress events are critical factors inhibiting crop yield. Meanwhile, world population is growing very rapidly and will be reached up to 9 billion by 2050. To feed increasing world population, it is challenging task to increase about 70% global food productions. Food crops have significant contribution toward global food demand and food security. However, consequences from increasing heat stress events are demolishing their abilities to survive and sustain yield when subjected to extreme high temperature stress. Therefore, there is dire need to better understand response and tolerance mechanism of food crops following exposure to heat stress. Here, we aimed to provide recent update on impact of high temperature stress on crop yield of food crops, pollination, pollinators, and novel strategies for improving tolerance of food crop under high temperature stress. Importantly, development of heat-resistant transgenic food crops can grant food security through transformation of superior genes into current germplasm, which are associated with various signaling pathways as well as epigenetic regulation in response to extreme high temperature stress.


Eventos de estresse de alta temperatura são fatores críticos que inibem o rendimento das culturas. Enquanto isso, a população mundial está crescendo muito rapidamente e atingirá até 9 bilhões em 2050. Para alimentar a crescente população mundial, é uma tarefa desafiadora aumentar cerca de 70% da produção global de alimentos. As culturas alimentares têm uma contribuição significativa para a procura global de alimentos e a segurança alimentar. No entanto, as consequências do aumento de eventos de estresse por calor estão destruindo suas habilidades de sobreviver e manter a produção quando submetidos a estresse de alta temperatura. Portanto, há uma necessidade urgente de entender melhor o mecanismo de resposta e tolerância das safras de alimentos após a exposição ao estresse por calor. Aqui, nosso objetivo foi fornecer atualizações recentes sobre o impacto do estresse de alta temperatura no rendimento de culturas de alimentos, polinização, polinizadores e novas estratégias para melhorar a tolerância de culturas de alimentos sob estresse de alta temperatura. É importante ressaltar que o desenvolvimento de culturas alimentares transgênicas resistentes ao calor pode garantir segurança alimentar por meio da transformação de genes superiores em germoplasma atual, que estão associados a várias vias de sinalização, bem como à regulação epigenética em resposta ao estresse de alta temperatura extrema.


Subject(s)
Food Demand , Heat Stress Disorders , Food, Genetically Modified , Agriculture , Pollination , Food , Food Supply
6.
Braz. j. biol ; 822022.
Article in English | LILACS-Express | LILACS, VETINDEX | ID: biblio-1468796

ABSTRACT

Abstract High temperature stress events are critical factors inhibiting crop yield. Meanwhile, world population is growing very rapidly and will be reached up to 9 billion by 2050. To feed increasing world population, it is challenging task to increase about 70% global food productions. Food crops have significant contribution toward global food demand and food security. However, consequences from increasing heat stress events are demolishing their abilities to survive and sustain yield when subjected to extreme high temperature stress. Therefore, there is dire need to better understand response and tolerance mechanism of food crops following exposure to heat stress. Here, we aimed to provide recent update on impact of high temperature stress on crop yield of food crops, pollination, pollinators, and novel strategies for improving tolerance of food crop under high temperature stress. Importantly, development of heat-resistant transgenic food crops can grant food security through transformation of superior genes into current germplasm, which are associated with various signaling pathways as well as epigenetic regulation in response to extreme high temperature stress.


Resumo Eventos de estresse de alta temperatura são fatores críticos que inibem o rendimento das culturas. Enquanto isso, a população mundial está crescendo muito rapidamente e atingirá até 9 bilhões em 2050. Para alimentar a crescente população mundial, é uma tarefa desafiadora aumentar cerca de 70% da produção global de alimentos. As culturas alimentares têm uma contribuição significativa para a procura global de alimentos e a segurança alimentar. No entanto, as consequências do aumento de eventos de estresse por calor estão destruindo suas habilidades de sobreviver e manter a produção quando submetidos a estresse de alta temperatura. Portanto, há uma necessidade urgente de entender melhor o mecanismo de resposta e tolerância das safras de alimentos após a exposição ao estresse por calor. Aqui, nosso objetivo foi fornecer atualizações recentes sobre o impacto do estresse de alta temperatura no rendimento de culturas de alimentos, polinização, polinizadores e novas estratégias para melhorar a tolerância de culturas de alimentos sob estresse de alta temperatura. É importante ressaltar que o desenvolvimento de culturas alimentares transgênicas resistentes ao calor pode garantir segurança alimentar por meio da transformação de genes superiores em germoplasma atual, que estão associados a várias vias de sinalização, bem como à regulação epigenética em resposta ao estresse de alta temperatura extrema.

7.
Mem. Inst. Oswaldo Cruz ; 115: e190457, 2020. tab, graf
Article in English | LILACS, SES-SP | ID: biblio-1135252

ABSTRACT

BACKGROUND Imitation SWItch (ISWI) ATPase is the catalytic subunit in diverse chromatin remodeling complexes. These complexes modify histone-DNA interactions and therefore play a pivotal role in different DNA-dependent processes. In Trypanosoma cruzi, a protozoan that controls gene expression principally post-transcriptionally, the transcriptional regulation mechanisms mediated by chromatin remodeling are poorly understood. OBJECTIVE To characterise the ISWI remodeler in T. cruzi (TcISWI). METHODS A new version of pTcGW vectors was constructed to express green fluorescent protein (GFP)-tagged TcISWI. CRISPR-Cas9 system was used to obtain parasites with inactivated TcISWI gene and we determined TcISWI partners by cryomilling-affinity purification-mass spectrometry (MS) assay as an approximation to start to unravel the function of this protein. FINDINGS Our approach identified known ISWI partners [nucleoplasmin-like protein (NLP), regulator of chromosome condensation 1-like protein (RCCP) and phenylalanine/tyrosine-rich protein (FYRP)], previously characterised in T. brucei, and new components in TcISWI complex [DRBD2, DHH1 and proteins containing a domain characteristic of structural maintenance of chromosomes (SMC) proteins]. Data are available via ProteomeXchange with identifier PXD017869. MAIN CONCLUSIONS In addition to its participation in transcriptional silencing, as it was reported in T. brucei, the data generated here provide a framework that suggests a role for TcISWI chromatin remodeler in different nuclear processes in T. cruzi, including mRNA nuclear export control and chromatin compaction. Further work is necessary to clarify the TcISWI functional diversity that arises from this protein interaction study.


Subject(s)
Animals , Transcription Factors/genetics , Trypanosoma cruzi/genetics , Adenosine Triphosphatases/genetics , Chromatin Assembly and Disassembly/genetics , Gene Expression Regulation , Blotting, Western , Flow Cytometry
8.
Chinese Journal of Tissue Engineering Research ; (53): 3269-3274, 2020.
Article in Chinese | WPRIM | ID: wpr-847512

ABSTRACT

BACKGROUND: Inflammatory bowel disease is a chronic inflammatory disease associated with intestinal immune, and autophagy is a cell approach to promote immune regulation. Abnormal expression of autophagy-related genes is closely related to intestinal inflammation and immune response. However, the mechanism by which epigenetic modification regulates autophagy in inflammatory bowel disease has not been fully clarified. OBJECTIVE: To introduce the role of epigenetic modification in autophagy, and to promote a further understanding of inflammatory bowel disease. METHODS: A computer-based online research of PubMed database was performed with the key words of “inflammatory bowel disease, autophagy, autophagy-related genes, epigenetic modification, DNA methylation, histone modification, chromatin remodeling, miRNA.” The search time was from January 1998 to April 2019. Finally, 61 eligible articles were included in result analysis. RESULTS AND CONCLUSION: Epigenetic modifications such as DNA methylation, histone modification, chromatin remodeling, non-coding RNA can regulate intestinal inflammation, immune and autophagy through susceptibility genes AGL and IRGM, thereby mediating the occurrence and development of inflammatory bowel disease.

9.
Chinese journal of integrative medicine ; (12): 633-640, 2020.
Article in English | WPRIM | ID: wpr-827434

ABSTRACT

Acupuncture has been widely used for treating diseases since the ancient days in China, but the mechanism by which acupuncture exerts such powerful roles is unclear. Epigenetics, including DNA methylation, histone modification, and post-transcriptional regulation of miRNAs, is the study of heritable changes in gene expression that do not include DNA sequence alterations. Epigenetics has become a new strategy for the basic and clinical research of acupuncture in the last decade. Some investigators have been trying to illustrate the mechanism of acupuncture from an epigenetics perspective, which has shed new lights on the mechanisms and applications of acupuncture. Moreover, the introduction of epigenetics into the regulatory mechanism in acupuncture treatment has provided more objective and scientific support for acupuncture theories and brought new opportunities for the improvement of acupuncture studies. In this paper, we reviewed the literatures that has demonstrated that acupuncture could directly or indirectly affect epigenetics, in order to highlight the progress of acupuncture studies correlated to epigenetic regulations. We do have to disclose that the current evidence in this review is not enough to cover all the complex interactions between multiple epigenetic modifications and their regulations. However, the up-to-date results can help us to better understand acupuncture's clinical applications and laboratory research.

10.
Protein & Cell ; (12): 207-215, 2018.
Article in English | WPRIM | ID: wpr-756955

ABSTRACT

Metabolic syndrome has become a global epidemic that adversely affects human health. Both genetic and environmental factors contribute to the pathogenesis of metabolic disorders; however, the mechanisms that integrate these cues to regulate metabolic physiology and the development of metabolic disorders remain incompletely defined. Emerging evidence suggests that SWI/SNF chromatin-remodeling complexes are critical for directing metabolic reprogramming and adaptation in response to nutritional and other physiological signals. The ATP-dependent SWI/SNF chromatin-remodeling complexes comprise up to 11 subunits, among which the BAF60 subunit serves as a key link between the core complexes and specific transcriptional factors. The BAF60 subunit has three members, BAF60a, b, and c. The distinct tissue distribution patterns and regulatory mechanisms of BAF60 proteins confer each isoform with specialized functions in different metabolic cell types. In this review, we summarize the emerging roles and mechanisms of BAF60 proteins in the regulation of nutrient sensing and energy metabolism under physiological and disease conditions.


Subject(s)
Humans , Chromatin Assembly and Disassembly , DNA-Binding Proteins , Metabolism , Disease , Metabolism , Nutrients , Metabolism , Signal Transduction
11.
Chinese Journal of Radiological Medicine and Protection ; (12): 717-720, 2016.
Article in Chinese | WPRIM | ID: wpr-502307

ABSTRACT

Cumulative evidence demonstrated that the chromatin modification plays important roles in the processes of DNA replication,transcription,repair and recombination.Both of the generation of DNA lesions and the activation of DNA damage response (DDR) to ionizing radiation could be affected by the chromatin modifications.This paper reviewed the recent research progresses in the chromatin structure modifications and its role in DDR,especially the influence of characteristic chromatin structure and histone modification on the radiation sensitivity of tumor cells.

12.
Chinese Journal of Pharmacology and Toxicology ; (6): 1312-1315, 2016.
Article in Chinese | WPRIM | ID: wpr-508029

ABSTRACT

Since the first session of Chinese anti-inflammatory immunopharmacological society in 1982,many breakthroughs of immunological research have been made in western countries,such as identification of pathogens by natural immune cells,regulation of immune response,lymphocyte differ?entiation and development. At the same time,much progress has been achieved in anti-inflammatory and immunological research in China,especially in the field of basic scientific issues in immunology, frontier and hot topics,immunological mechanisms of major diseases and related drugs. The course of development of Chinese anti- inflammatory immunopharmacological research has experiences various stages,such as ″follow ″ in the past to ″work together ″ and to ″lead ″ in some research areas in today′s international immunology.

13.
Protein & Cell ; (12): 749-760, 2016.
Article in English | WPRIM | ID: wpr-757388

ABSTRACT

The BCCIP (BRCA2- and CDKN1A-interacting protein) is an important cofactor for BRCA2 in tumor suppression. Although the low expression of BCCIP is observed in multiple clinically diagnosed primary tumor tissues such as ovarian cancer, renal cell carcinoma and colorectal carcinoma, the mechanism of how BCCIP is regulated in cells is still unclear. The human INO80/YY1 chromatin remodeling complex composed of 15 subunits catalyzes ATP-dependent sliding of nucleosomes along DNA. Here, we first report that BCCIP is a novel target gene of the INO80/YY1 complex by presenting a series of experimental evidence. Gene expression studies combined with siRNA knockdown data locked candidate genes including BCCIP of the INO80/YY1 complex. Silencing or over-expressing the subunits of the INO80/YY1 complex regulates the expression level of BCCIP both in mRNA and proteins in cells. Also, the functions of INO80/YY1 complex in regulating the transactivation of BCCIP were confirmed by luciferase reporter assays. Chromatin immunoprecipitation (ChIP) experiments clarify the enrichment of INO80 and YY1 at +0.17 kb downstream of the BCCIP transcriptional start site. However, this enrichment is significantly inhibited by either knocking down INO80 or YY1, suggesting the existence of both INO80 and YY1 is required for recruiting the INO80/YY1 complex to BCCIP promoter region. Our findings strongly indicate that BCCIP is a potential target gene of the INO80/YY1 complex.


Subject(s)
Humans , Calcium-Binding Proteins , Genetics , Metabolism , Cell Cycle Proteins , Genetics , Metabolism , Chromatin Assembly and Disassembly , Physiology , DNA Helicases , Genetics , Metabolism , HeLa Cells , Multiprotein Complexes , Genetics , Metabolism , Nuclear Proteins , Genetics , Metabolism , Promoter Regions, Genetic , Physiology , Transcription, Genetic , Physiology , YY1 Transcription Factor , Genetics , Metabolism
14.
Basic & Clinical Medicine ; (12): 1267-1270, 2015.
Article in Chinese | WPRIM | ID: wpr-479322

ABSTRACT

SWI/SNF is an ATP-dependent chromatin remodeling complex .ARID1 A gene is an important subunit of SWI/SNF complex and its dysfunction can cause abnormal chromatin remodeling , resulting in tumorigenesis .AR-ID1A occurs frequently low expression or deletion mutation in a variety of malignant tumors , such as ovarian canc-er, liver cancer, breast cancer, stomach cancer, lung cancer and so on, which indicates that ARID1A is an impor-tant tumor suppressor gene .

15.
International Journal of Pediatrics ; (6): 247-249,253, 2013.
Article in Chinese | WPRIM | ID: wpr-598343

ABSTRACT

Epigenetics refers to the heritable changes in gene expression without an alteration in the DNA sequence of the genome.Epigenetic mechanism involves DNA methylation,histone modification,chromatin remodeling,non-coding RNA regulation and so on.Many experimental investigations indicate that the abnormalities in epigenetic regulation during cardiac development may be responsible for the progression of congenital cardiac disease.Based on the four aspects of epigenetic regulation above,this review mainly discusses the advances of epigenetic mechanism of congenital heart disease.

16.
Journal of Gynecologic Oncology ; : 376-381, 2013.
Article in English | WPRIM | ID: wpr-102408

ABSTRACT

One of the exciting findings in recent cancer genome studies is the discovery of somatic mutations in several chromatin remodeling genes. These studies not only illuminate the emerging roles of chromatin remodeling in the pathogenesis of human cancer but also provide molecular genetic basis of aberrant epigenomic regulation as one of the key mechanisms driving cancer development. This is because chromatin remodeling influences a variety of DNA activities such as replication, transcription, repair, methylation, and recombination. Among the mutated chromatin remodeling genes reported, ARID1A is frequently mutated in a variety of human cancers, especially in endometrium-related neoplasms including ovarian clear cell carcinoma, ovarian endometrioid carcinomas, and uterine endometrioid carcinomas, all of which arise from endometrial epithelium. This review will summarize the recent advances in studying the roles of ARID1A mutations in gynecologic cancers with special emphasis on how this new knowledge will further extend our understanding of the pathogenesis of endometrium-related carcinomas.


Subject(s)
Female , Humans , Carcinoma, Endometrioid , Chromatin Assembly and Disassembly , DNA , Endometriosis , Epigenomics , Epithelium , Genome , Methylation , Molecular Biology , Ovarian Neoplasms , Recombination, Genetic
17.
Clinical Psychopharmacology and Neuroscience ; : 136-143, 2012.
Article in English | WPRIM | ID: wpr-206721

ABSTRACT

Regulation of gene expression is considered a plausible mechanism of drug addiction given the stability of behavioral abnormalities that define an addicted state. Numerous transcription factors, proteins that bind to regulatory regions of specific genes and thereby control levels of their expression, have been implicated in the addiction process over the past decade or two. Here we review the growing evidence for the role played by several prominent transcription factors, including a Fos family protein (DeltaFosB), cAMP response element binding protein (CREB), and nuclear factor kappa B (NFkappaB), among several others, in drug addiction. As will be seen, each factor displays very different regulation by drugs of abuse within the brain's reward circuitry, and in turn mediates distinct aspects of the addiction phenotype. Current efforts are geared toward understanding the range of target genes through which these transcription factors produce their functional effects and the underlying molecular mechanisms involved. This work promises to reveal fundamentally new insight into the molecular basis of addiction, which will contribute to improved diagnostic tests and therapeutics for addictive disorders.


Subject(s)
Humans , Chromatin Assembly and Disassembly , Cyclic AMP Response Element-Binding Protein , Diagnostic Tests, Routine , Epigenomics , Gene Expression Regulation , NF-kappa B , Nucleus Accumbens , Phenotype , Proteins , Regulatory Sequences, Nucleic Acid , Reward , Illicit Drugs , Substance-Related Disorders , Transcription Factors , Ventral Tegmental Area
18.
Immune Network ; : 1-7, 2012.
Article in English | WPRIM | ID: wpr-39030

ABSTRACT

Interleukin-24 (IL-24) belongs to the IL-10 family of cytokines and is well known for its tumor suppressor activity. This cytokine is released by both immune and nonimmune cells and acts on non-hematopoietic tissues such as skin, lung and reproductive tissues. Apart from its ubiquitous tumor suppressor function, IL-24 is also known to be involved in the immunopathology of autoimmune diseases like psoriasis and rheumatoid arthritis. Although the cellular sources and functions of IL-24 are being increasingly investigated, the molecular mechanisms of IL-24 gene expression at the levels of signal transduction, epigenetics and transcription factor binding are still unclear. Understanding the specific molecular events that regulate the production of IL-24 will help to answer the remaining questions that are important for the design of new strategies of immune intervention involving IL-24. Herein, we briefly review the signaling pathways and transcription factors that facilitate, induce, or repress production of this cytokine along with the cellular sources and functions of IL-24.


Subject(s)
Humans , Arthritis, Rheumatoid , Autoimmune Diseases , Chromatin Assembly and Disassembly , Cytokines , Epigenomics , Gene Expression , Interleukin-10 , Interleukins , Lung , Psoriasis , Signal Transduction , Skin , Transcription Factors
19.
ARBS annu. rev. biomed. sci ; 11(n.esp): T114-T122, 20090000. ilus
Article in English | LILACS | ID: lil-560454

ABSTRACT

It has been long thought that the brain reorganizes itself in response to environmental needs. Sensory experiences coded in action potentials are the mean by which information on the surroundings is introduced into neuronal networks. The information approaching the brain in the form of electrochemical codes must then be translated in biochemical, epigenetic and genetic ones. Only until recently we have begun understanding the underpinning of such informational transformations and how this process is expressed as neuronal plastic responses. Central for our comprehension of this matter is the finding that signals transduction cascades can modify gene expression by remodeling the chromatin through epigenetic mechanisms. Hence, chromatin remodeling seems to be the process by which experiences are “imprinted”.


Subject(s)
Epigenesis, Genetic , Gene Expression , Neuronal Plasticity , Signal Transduction
20.
Journal of Medical Research ; (12): 18-22, 2009.
Article in Chinese | WPRIM | ID: wpr-406267

ABSTRACT

Objective To analyze the regulation of NEF3 expression in SH - SY5Y after RA induction. Methods The expression of NEF3 and Brg1 genes was individually detected by realtime RT - PCR and Western blot analyses. Then, the CAT reporter driven by 5' flanking region ofNEF3 gene (pBLCAT3 -2. 8k - NEF3) was co - transfccted with eukaryotic expression plasmids of pBJ5 - Brgl or pBJ5 - Brg1 - NTP into SH - SY5Y respectively. Promoter activity of the NEF3 gene was detected by competitive RT - PCR assay. Results Similar changes in the mRNA expression of NEF3 and Brg1 and that of the protein expression of Brgl were detected in Sh - SY5Y cells af-ter RA treatment for 12 -24h. Wild type Brgl can promote the expression of pBLCAT3 -2.8k -NEF3 promoter after RA induction, but not mutant Brg1. Conclusion Brgl helpes regulating the expression of NEF3 gene possibly via changes in chromatin conformation in the SH -SY5Y cells after RA induction.

SELECTION OF CITATIONS
SEARCH DETAIL